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Abstrad. Starting from a given cosmological model, we rotate (in the sense described in the 
paper) Cartan moving frames over the manifold of the model to construct rotating 
cosmological models. A class of solutions with perfect fluid which correspond to rotating 
models is obtained, from Minkowski space. 

Rotating universes have the interesting property that matter rotates with  zero 
@xvelocity, in a local inertial system in whose origin it is taken to be at rest at the 
-ut considered (Godel 1949). Such a rotation can be incorporated nabrally in 
cartan moving frames (Cartan 1922, see also Cartan 1952) on the manifold. This 
pvi@ a simple geometrical tool for stopping or starting the rotation of a given 
&em and analysing the resulting model. As an example, we obtain by this process a 
b o f  rotating models, starting from Minkowski space. 

The line element of any locally Lorentzian manifold can always be decomposed: 

ds’ = (e?’- (e’)’ -(ez)’ - (e3)’. (1) 

Toadecomposition of the ds2 in squares of the form (1) there corresponds in a unique 
wcly Six l-forms oAB = - wBA, linear in O A  and satisfying the structure equations$ 

(2) A A B  de =--o B A ~ .  

hdecomposition (1) defines in each point of the manifold a Cartesian (moving) frame 
of reference, with B A  being the components of the instantaneous translation and WAB 

components of the instantaneous rotation of this frame.$ An observer having 
h i a n  coordinates (X^) with respect to the moving frame is at rest for such an 
mfinitesimal motion of the moving frame if 

dXA + e A + wABxB = 0. (3) 

Now let US consider a stationary rotating universe and the local inertial frame of an 
Observer “ X h g  with matter. A fluid particle with coordinates X A  can be at rest 
ar@Wct*tO the frame if its rotation is assimilated-in the sense of (3)-tO an 
additional instantaneous rotation of the frame. We have then a naturally defined 
cart, moving frame, where the additional w 

dXA-(jA,XB=O 
t 
’c-qntalh.. wsuF’POrted bY CNPq/Brasil. 

mdKes run from 0 to 3; they are raised and lowered with the Minkowski metric  AB, 
:=dy+1>-1, -1, -1). 

n~~referencct,ECartan’sideaofmovingframesmaybefoundin~hapter3, HCartan(l971). 
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are the 1-forms of the rotation of the universe. Once these are prescribed or identified 
on a given model, we can introduce or eliminate rotation by adding or s&ahgterms 
in (3) of the above type, and modifying structure equations COrespondh&. 

n e  rotation 1-forms can be obtained as f o l l ~ ~ ~ .  An observer a-moving wirh 
matter has four velocity. 

(4) 
0 

UA = a,”, u A = ~ A  

in a local moving frame determined by (1). This corresponds to a matter-velocityfield 

U& = e(‘A)uA = e &  

where the tetrads e&) are defined by 

(3 = elA’ dX’. 

In the local frame, the rotation of the world lines of matter 

‘AB = ( ‘pI /v-  uvl],)eb)ec‘B) 
is given by 

am = yoAB - yoBA 

in which we used the Ricci rotation coefficients defined by 

YABC = e(A)pll,e&,erc). 
Equation (6) can be expressed as the 2-form 

= RABeA A eB (8) 

$2 = deo. (9) 

of the rotation of the universe, and by (2) we have the relation 

In general, the rotation of a cosmological model is zero if and only if R=O. More 
properly, a rotation in the (XI, X’) plane, i, j = 1,2,3, of a local inertial observer 
only contribute to 1R in components of 0’ A s‘.? 

is given by the new 1-forms 
It is then clear that the most general type of rotation we can introduce in a madold 

(10) &AB = @AB ‘c a A B C ( w E A B C e C  

A, B, C= (0, i, j ) ,  i, j = 1,2,3. 

EABC is the Levi-Civitta symbol and @AB are the rotation l-foms of the On@ 
manifold. Equation (10) defines uniquely the structure of a manifold whichisarotam 
cosmological model. The new 6 will be solutions of deA = - G*B A e B. Besides, (10) 

must satisfy Einstein’s equation for a given source, and this results in quations 
the a and the matter content of the model. The method is general and the gmme” 
interpretation obvious. 

instance, we can verify that dBo=a(t)eOp,e’ does not comespond to a rotation but lSd,& 

XceleratiOn along X’. Such universes contain a class of solutions of Einstein’s equation (for de 
de3 = 0) known a~ Ehlers-Kundt plane-gravitational waves. 

. 
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w e ~ l  now consider an example. We start with a Minkowski space and, according 
to(lO),pr~ed to rotate the (X', X') plane of the Cartan frame as 

ool = 4 oo2 = pa', U 1 2  = reo (1 1) 

&p, as constants. Using (11) in (2) we obtain 

deo= ( a - p ) e l A  e2 
de'= (a + y)8' A 8' (12) 
de'=--(P-Y)e'~ 84. 

Weassme an observer co-moving with matter as in (4). The congruence of world lines 
of matter is defined by the unity velocity field U* = e&,. It is geodesic and expansion free 
if 

(13) 0 
A O = O  

respectively. Conditions (13) and (14) are always satisfied for choice (lo), provided the 
wiginal o satisfy them. 

Fora perfect fluid source, the density of matter and the pressure, as measured by the 
above co-moving observers, are denoted by p and P respectively. The vanishing of the 
dkergence of the energy-momentum tensor, (13) and (14) imply that p and P are 
constants, as expected. Einstein's equations with a cosmological term 

R A B  -($I? - A ) ~ A B  = K [ ( p  + P ) ~ A U B  - ~ A B I  
aresatisfied by (12) for 

y=O Zap + A =  Kp 

2A = K(p  - P )  
*arbitrary equation of state. Notice the two special cases: 

6) Incoherent matter 

y=O 

P=O 
4ap = Kp = 2A. 

6) Extreme relativisitic perfect fluid 

r=O 2 4  = Kp 

A = O  P = o .  
l'l COrrespond to homogeneous rotating cosmological models. The line 
hentwill be given by (1) with the 8 satisfying (12)-integrabiiity conditions for this ease 
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New e' may be defined by 

8' = Aoe'O e1=A16' t12 = AZi2 e3 = A363 

and used to transform (12) into 

de" = €,e'' A e" 
d? = €,e'' A e" 

de" = e l g z ~  e" 

where, for solutions (16) 

€1 = -a(AoAz/Ai) 

€2 = -P(AoA1/A2) 
E & = E 2 ~ : - ~ , ~ : .  

00) 

If we consider cases (17) and (18) only, we must have ap > 0 because p > 0. Thisimph 

€1€2>O 

and we have the following groups on sections X3 =constant: 

*1 rl >1 
*l *l <1 

0 1 1 

The two first cases are equivalent for the change of 8' and 8'. They correspond 
Bianchi type VI11 (Ellis and MacCallum 1969). 

In general for the case (16), condition aP > 0 is not necessary and (12) or (19) allom 
for other group types on X3 = constant sections and correspondingly more SOiUhm. 

To ilIustrate, consider the case when 
E o =  -1, €1 = € 2  = +1, a >o. (21) 

ds2= A ~ ( ~ 4 2 - A , 2 ( ~ 1 ) 2 - A 2 2 ( ~ 2 ) 2 - A 3 2 ( ~ 3 ) 2  (2) 
The line element is given by 

with 

6'==sinx1 dx2+ex2cos~1  dt = dx' +ex2 dt 

8 2 = ~ ~ ~ ~ 1 d x 2 + e X 2 s i n x ' d t  g3 = dx3 

which satisfy (19) for (21), and 

Kp = 4/Ai = 2h forP=O 

Kp = 2/Ai fo rP=p  

A ~ ~ = A ~ ~ - A ~ ~ .  
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aIatterpropagates along the geodesic congruence defined by the unit geodesic vector 

(23b) 
M 

~ ~ = ( l / A ~ ) ( e - ~ ~ c o s ~ ~ , - c ~ ~ ~  ,-sinx',O). 

gution (23) does not include the Godel model as a particular case. 
For&e value a = 1, we have the limiting case eo = 0 so that we have a finite density 

ofmatter. n e  group acting on X 3  = constant section is Bianchi I-this corresponds to 
homogeneous non-rotating anisotropic solution with dust, 

1 

ds2=A;dt2--A1* e-2'(dx')Z-A,2 e2'(dx2)'-(dx3)* 

Kp = 4/Ai = 2A. 

%method could also be used to eliminate the rotation of a rotating universe. We 
b d o n e  this for the Godel model, obtaining a non-rotating model which is a solution 
offinstein's equations for a fluid with density p and anisotropic pressure. The 
mological constant has a sign opposite to that of Godel's, and the components of 
pesflue cannot all have the same sign simultaneously, even though satisfying 
energy conditions. A class of two-dimensional space-like. sections have peculiar 
pqxrties related to the completeness of geodesics, which we intend to discuss in the 
fahrre. At present, we are working on a rotating expanding model which is a demanding 
application of the method. 
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