Cartan frames and rotating universes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 9555
(http://iopscience.iop.org/0305-4470/9/4/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:16

Please note that terms and conditions apply.

Cartan frames and rotating universes \dagger

I Damião Soares
Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brasil

Received 9 July 1975, in final form 9 December 1975

Abstract

Starting from a given cosmological model, we rotate (in the sense described in the paper) Cartan moving frames over the manifold of the model to construct rotating cosmological models. A class of solutions with perfect fluid which correspond to rotating models is obtained, from Minkowski space.

Rotating universes have the interesting property that matter rotates with non-zero angular velocity, in a local inertial system in whose origin it is taken to be at rest at the moment considered (Gödel 1949). Such a rotation can be incorporated naturally in Cartan moving frames (Cartan 1922, see alsc Cartan 1952) on the manifold. This provides a simple geometrical tool for stopping or starting the rotation of a given uriverse and analysing the resulting model. As an example, we obtain by this process a dass of rotating models, starting from Minkowski space.
The line element of any locally Lorentzian manifold can always be decomposed:

$$
\begin{equation*}
\mathrm{d} s^{2}=\left(\theta^{0}\right)^{2}-\left(\theta^{1}\right)^{2}-\left(\theta^{2}\right)^{2}-\left(\theta^{3}\right)^{2} \tag{1}
\end{equation*}
$$

Toadecomposition of the ds^{2} in squares of the form (1) there corresponds in a unique way six 1 -forms $\omega_{A B}=-\omega_{B A}$, linear in θ^{A} and satisfying the structure equations \ddagger

$$
\begin{equation*}
\mathrm{d} \theta^{A}=-\omega_{B}^{A} \wedge \theta^{B} . \tag{2}
\end{equation*}
$$

The decomposition (1) defines in each point of the manifold a Cartesian (moving) frame of feference, with θ^{A} being the components of the instantaneous translation and $\omega_{A B}$ the components of the instantaneous rotation of this frame.§ An observer having Cartesian coordinates (X^{A}) with respect to the moving frame is at rest for such an infaitesimal motion of the moving frame if

$$
\begin{equation*}
\mathrm{d} X^{\mathrm{A}}+\theta^{\mathrm{A}}+\omega_{B}^{\mathrm{A}} X^{B}=0 . \tag{3}
\end{equation*}
$$

Now let us consider a stationary rotating universe and the local inertial frame of an observer co-moving with matter. A fluid particle with coordinates X^{A} can be at rest with respect to the frame if its rotation is assimilated-in the sense of (3)-to an additional instantaneous rotation of the frame. We have then a naturally defined Cartan moving frame, where the additional ω

$$
\mathrm{d} X^{A}-\tilde{\omega}^{A}{ }_{B} X^{B}=0
$$

[^0]are the 1 -forms of the rotation of the universe. Once these are prescribed or identified on a given model, we can introduce or eliminate rotation by adding or subtracting terms in (3) of the above type, and modifying structure equations correspondingly.

The rotation 1 -forms can be obtained as follows. An observer co-moving with matter has four velocity.

$$
\begin{equation*}
u^{A}=\delta_{0}^{A}, \quad u_{A}=\delta_{A}^{0} \tag{4}
\end{equation*}
$$

in a local moving frame determined by (1). This corresponds to a matter-velocity field

$$
u^{\mu}=e_{(A)}^{\mu} u^{A}=e_{(0)}^{\mu}
$$

where the tetrads $e_{(A)}^{\mu}$ are defined by

$$
\begin{equation*}
\theta^{A}=e_{\mu}^{(A)} \mathrm{d} X^{\mu} \tag{5}
\end{equation*}
$$

In the local frame, the rotation of the world lines of matter

$$
\Omega_{A B}=\left(u_{\mu \| \nu}-u_{\nu \mid \mu}\right) e_{(A)}^{\mu} e_{(B)}^{\nu}
$$

is given by

$$
\begin{equation*}
\Omega_{A B}=\gamma_{O A B}-\gamma_{O B A} \tag{6}
\end{equation*}
$$

in which we used the Ricci rotation coefficients defined by

$$
\begin{equation*}
\gamma_{A B C}=e_{(A) \beta \| \gamma} e_{(B)}^{\beta} e_{(C)}^{\gamma} . \tag{7}
\end{equation*}
$$

Equation (6) can be expressed as the 2 -form

$$
\begin{equation*}
\Omega=\Omega_{A B} \theta^{A} \wedge \theta^{B} \tag{8}
\end{equation*}
$$

of the rotation of the universe, and by (2) we have the relation

$$
\begin{equation*}
\frac{1}{2} \Omega=\mathrm{d} \theta^{0} \tag{9}
\end{equation*}
$$

In general, the rotation of a cosmological model is zero if and only if $\Omega=0$. More properly, a rotation in the (X^{i}, X^{j}) plane, $i, j=1,2,3$, of a local inertial observer will only contribute to Ω in components of $\theta^{i} \wedge \theta^{j} . \dagger$

It is then clear that the most general type of rotation we can introduce in a manifold is given by the new 1 -forms

$$
\begin{equation*}
\bar{\omega}_{A B}=\omega_{A B}+\sum_{c} \alpha_{A B C}(X) \epsilon_{A B C} \theta^{c} \tag{10}
\end{equation*}
$$

$$
A, B, C=(0, i, j), \quad i, j=1,2,3
$$

$\epsilon_{A B C}$ is the Levi-Civitta symbol and $\omega_{A B}$ are the rotation 1 -forms of the orignal manifold. Equation (10) defines uniquely the structure of a manifold which is a rotating cosmological model. The new θ will be solutions of $d \theta^{A}=-\bar{\omega}^{A}{ }_{B} \wedge \theta^{B}$. Besides, (10) must satisfy Einstein's equation for a given source, and this results in equations relating the α and the matter content of the model. The method is general and the geometrial interpretation obvious.
\dagger For instance, we can verify that $\mathrm{d} \theta^{\circ}=\alpha(t) \theta^{0} \wedge \theta^{1}$ does not correspond to a rotation but to a boced acceleration along X^{1}. Such universes contain a class of solutions of Einstein's equation (for $d \theta^{2}=d \theta^{2}=$ $\mathrm{d} \theta^{3}=0$) known as Ehlers-Kundt plane-gravitational waves.

We will now consider an example. We start with a Minkowski space and, according to(10), proceed to rotate the (X^{1}, X^{2}) plane of the Cartan frame as

$$
\begin{equation*}
\omega_{01}=\alpha \theta^{2}, \quad \omega_{02}=\beta \theta^{1}, \quad \omega_{12}=\gamma \theta^{0} \tag{11}
\end{equation*}
$$

with α, β, γ as constants. Using (11) in (2) we obtain

$$
\begin{align*}
& \mathrm{d} \theta^{0}=(\alpha-\beta) \theta^{1} \wedge \theta^{2} \\
& \mathrm{~d} \theta^{1}=(\alpha+\gamma) \theta^{2} \wedge \theta^{0} \tag{12}\\
& \mathrm{~d} \theta^{2}=-(\beta-\gamma) \theta^{1} \wedge \theta^{0},
\end{align*}
$$

We assume an observer co-moving with matter as in (4). The congruence of world lines of matter is defined by the unity velocity field $u^{\mu}=e_{(0)}^{\mu}$. It is geodesic and expansion free if

$$
\begin{equation*}
\gamma^{0}{ }_{A 0}=0 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma^{0 A}{ }_{A}=0 \tag{14}
\end{equation*}
$$

respectively. Conditions (13) and (14) are always satisfied for choice (10), provided the original ω satisfy them.

For a perfect fluid source, the density of matter and the pressure, as measured by the above co-moving observers, are denoted by ρ and P respectively. The vanishing of the divergence of the energy-momentum tensor, (13) and (14) imply that ρ and P are constants, as expected. Einstein's equations with a cosmological term

$$
\begin{equation*}
R_{A B}-\left(\frac{1}{2} R-\Lambda\right) \eta_{A B}=K\left[(\rho+P) u_{A} u_{B}-P \eta_{A B}\right] \tag{15}
\end{equation*}
$$

are satisfied by (12) for

$$
\begin{array}{cl}
\gamma=0 & 2 \alpha \beta+\Lambda=K \rho \\
& 2 \Lambda=K(\rho-P) \tag{16}
\end{array}
$$

with arbitrary equation of state. Notice the two special cases:
(i) Incoherent matter

$$
\begin{align*}
& \gamma=0 \\
& P=0 \tag{17}
\end{align*} \quad 4 \alpha \beta=K \rho=2 \Lambda .
$$

(ii) Extreme relativisitic perfect fluid

$$
\begin{array}{ll}
\gamma=0 & 2 \alpha \beta=K \rho \\
\Lambda=0 & P=\rho . \tag{18}
\end{array}
$$

Al solutions correspond to homogeneous rotating cosmological models. The line tement will be given by (1) with the θ satisfying (12)-integrability conditions for this ase

$$
C_{[A C}^{F} C_{D] F}^{B}=0
$$

are automatically satisfied and guarantee the existence of the θ, where the structure anstants $C^{A}{ }_{B C}$ are defined by

$$
\mathrm{d} \theta^{A}=-\frac{1}{2} C^{A}{ }_{B C} \theta^{B} \wedge \theta^{C} .
$$

New $\tilde{\theta}$ may be defined by

$$
\theta^{0}=A_{0} \tilde{\theta}^{0} \quad \theta^{1}=A_{1} \tilde{\theta}^{1} \quad \theta^{2}=A_{2} \tilde{\theta}^{2} \quad \theta^{3}=A_{3} \tilde{\theta}^{3}
$$

and used to transform (12) into

$$
\begin{align*}
& \mathrm{d} \tilde{\theta}^{0}=\epsilon_{0} \tilde{\theta}^{1} \wedge \tilde{\theta}^{2} \quad \mathrm{~d} \tilde{\theta}^{1}=\epsilon_{1} \tilde{\theta}^{2} \wedge \tilde{\theta}^{0} \\
& \mathrm{~d} \tilde{\theta}^{2}=\epsilon_{2} \tilde{\theta}^{1} \wedge \tilde{\theta}^{0} \tag{19}
\end{align*}
$$

where, for solutions (16)

$$
\begin{align*}
& \epsilon_{1}=-\alpha\left(A_{0} A_{2} / A_{1}\right) \\
& \epsilon_{2}=-\beta\left(A_{0} A_{1} / A_{2}\right) \tag{20}\\
& \epsilon_{0} A_{0}^{2}=\epsilon_{2} A_{2}^{2}-\epsilon_{1} A_{1}^{2} .
\end{align*}
$$

If we consider cases (17) and (18) only, we must have $\alpha \beta>0$ because $\rho>0$. This implies

$$
\epsilon_{1} \epsilon_{2}>0
$$

and we have the following groups on sections $X^{3}=$ constant:

ϵ_{0}	$\epsilon_{1}=\epsilon_{2}$	$a=\left\|A_{1} / A_{2}\right\|$
± 1	∓ 1	>1
± 1	± 1	<1
0	1	1

The two first cases are equivalent for the change of θ^{1} and θ^{2}. They correspond to Bianchi type VIII (Ellis and MacCallum 1969).

In general for the case (16), condition $\alpha \beta>0$ is not necessary and (12) or (19) aliow for other group types on $X^{3}=$ constant sections and correspondingly more solutions.

To illustrate, consider the case when

$$
\begin{equation*}
\epsilon_{0}=-1, \quad \epsilon_{1}=\epsilon_{2}=+1, \quad a>0 . \tag{21}
\end{equation*}
$$

The line element is given by

$$
\begin{equation*}
\mathrm{d} s^{2}=A_{0}^{2}\left(\tilde{\theta}^{0}\right)^{2}-A_{1}^{2}\left(\tilde{\theta}^{1}\right)^{2}-A_{2}^{2}\left(\tilde{\theta}^{2}\right)^{2}-A_{3}{ }^{2}\left(\tilde{\theta}^{3}\right)^{2} \tag{22}
\end{equation*}
$$

with

$$
\begin{array}{ll}
\tilde{\theta}^{0}=-\sin x^{1} \mathrm{~d} x^{2}+\mathrm{e}^{x^{2}} \cos \dot{x}^{1} \mathrm{~d} t & \tilde{\theta}^{1}=\mathrm{d} x^{1}+\mathrm{e}^{x^{2}} \mathrm{~d} t \\
\tilde{\theta}^{2}=\cos x^{1} \mathrm{~d} x^{2}+\mathrm{e}^{x^{2}} \sin x^{1} \mathrm{~d} t & \tilde{\theta}^{3}=\mathrm{d} x^{3}
\end{array}
$$

which satisfy (19) for (21), and

$$
\begin{array}{ll}
K \rho=4 / A_{0}^{2}=2 \Lambda & \text { for } P=0 \\
K \rho=2 / A_{0}^{2} & \text { for } P=\rho \tag{23a}\\
A_{0}^{2}=A_{1}^{2}-A_{2}{ }^{2} &
\end{array}
$$

Matter propagates along the geodesic congruence defined by the unit geodesic vector fald

$$
\begin{equation*}
u^{\mu}=\left(1 / A_{0}\right)\left(\mathrm{e}^{-x^{2}} \cos x^{1},-\cos x^{1},-\sin x^{1}, 0\right) . \tag{23b}
\end{equation*}
$$

Solution (23) does not include the Gödel model as a particular case.
For the value $a=1$, we have the limiting case $\epsilon_{0}=0$ so that we have a finite density dimatter. The group acting on $X^{3}=$ constant section is Bianchi I-this corresponds to the homogeneous non-rotating anisotropic solution with dust,

$$
\begin{aligned}
& \mathrm{ds} s^{2}=A_{0}^{2} \mathrm{~d} t^{2}-A_{1}^{2} \mathrm{e}^{-2 t}\left(d x^{1}\right)^{2}-A_{1}^{2} \mathrm{e}^{2 t}\left(\mathrm{~d} x^{2}\right)^{2}-\left(\mathrm{d} x^{3}\right)^{2} \\
& K \rho=4 / A_{0}^{2}=2 \Lambda .
\end{aligned}
$$

The method could also be used to eliminate the rotation of a rotating universe. We have done this for the Gödel model, obtaining a non-rotating model which is a solution of Einstein's equations for a fluid with density ρ and anisotropic pressure. The cosnological constant has a sign opposite to that of Gödel's, and the components of pressure cannot all have the same sign simultaneously, even though satisfying energy conditions. A class of two-dimensional space-like. sections have peculiar properties related to the completeness of geodesics, which we intend to discuss in the fature. At present, we are working on a rotating expanding model which is a demanding application of the method.

Rederences

Gran E 1922 J. Math. Pures Appl. 1 141-203

- 1955 Oeuvres Completes vol 1, part 3 (Paris: Gauthier-Villars) pp 549-611

Catre H 1971 Differential Forms. (London: Kershaw) chap 3
Eiris GFR and MacCallum M A H 1969 Commun. Math. Phys. 12 108-41
Coded K 1949 Rev. Mod. Phys. 21 447-50

[^0]: ${ }^{\text {tPraially supported by } \mathrm{CNPq} / \mathrm{Brasil} \text {. }}$
 Conis Latin indices run from 0 to 3 ; they are raised and lowered with the Minkowski metric $\eta_{A B}$, $A_{1}=$ = diagain $+1,-1,-1,-1$).
 Adccessible reference to E Cartan's idea of moving frames may be found in chapter 3, HCartan (1971).

