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Cartan frames and rotating universest

[ Damido Soares
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brasil

Received 9 July 1975, in final form 9 December 1975

Abstract. Starting from a given cosmological model, we rotate (in the sense described in the
paper) Cartan moving frames over the manifold of the model to construct rotating
cosmological models. A class of solutions with perfect fluid which correspond to rotating
models is obtained, from Minkowski space.

Rotating universes have the interesting property that matter rotates with non-zero
angular velocity, in a local inertial system in whose origin it is taken to be at rest at the
moment considered (Godel 1949). Such a rotation can be incorporated naturally in
Cartan moving frames (Cartan 1922, see alsc Cartan 1952) on the manifold. This
provides a simple geometrical tool for stopping or starting the rotation of a given
wiverse and analysing the resulting model. As an example, we obtain by this process a
dass of rotating models, starting from Minkowski space.
The line element of any locally Lorentzian manifold can always be decomposed:

dsz___(00)2_(01)2_(02)2_(93)2. (1)

TOﬂanomposition of the ds? in squares of the form (1) there corresponds in a unique
way six 1-forms w,p = — wp,4, linear in ” and satisfying the structure equationst

do* = -0z A 6% )

The decomposition (1) defines in each point of the manifold a Cartesian (moving) frame
o reference, with 94 being the components of the instantaneous translation and wap
the"""ﬂp(inents of the instantaneous rotation of this frame.§ An observer having
-Atesian coordinates (X“) with respect to the moving frame is at rest for such an
mfiitesimal motion of the moving frame if

dX*+0% + 05X = 0. 3)

Nr(:w let us cox_lsider a stationary rotating universe and the local inertial frame of an
X rer co-moving with matter. A fluid particle with coordinates X* can be at rest
.ﬁ:Sglegtvto the frame if its rotation is assimilated—in the sense of (3)—to an
i Instantaneous rotation of the frame. We have then a naturally defined
Moving frame, where the additional
dX* - G4, X5 =0
1- <
z%” *UPported by CNPq/ Brasil.
"“=diag(+1 “’f‘ce; run) from 0 to 3; they are raised and lowered with the Minkowski metric nap,
w1 =1).
lereference to E Cartan’sidea of moving frames may be found in chapter 3, H Cartan (1971).
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are the 1-forms of the rotation of the universe. Once these are prescribed or identifag
on a given model, we can introduce or eliminate rotation by adding or subtracting
in (3) of the above type, and modifying structure equations correspondingly.

The rotation 1-forms can be obtained as follows. An observer CO-moving with

matter has four velocity.
u® =8y, Up =8% @
in alocal moving frame determined by (1). This corresponds to a matter-velocityfielg
ut = efau” =el
where the tetrads ef., are defined by
g% =M ax*. 6
In the local frame, the rotation of the world lines of matter
Qg = (g, —4y,)¢00)¢05)
is given by
Qs = Yoas ~Yosa

in which we used the Ricci rotation coefficients defined by

Yasc = €aplyels¢lor Y
Equation (6) can be expressed as the 2-form
' Q=0,,0%6° @
of the rotation of the universe, and by (2) we have the relation
)

10=de°,

In general, the rotation of a cosmological model is zero if and only if Q=0. More
properly, a rotation in the (X', X) plane, i, j =1, 2, 3, of a local inertial observer will
only contribute to €} in components of 6° A &7 _

Itis then clear that the most general type of rotation we can introduce ina manifold
is given by the new 1-forms )

@ap = Wap +§ aapc(X)€apct’ (10

A,B,C=(0,4,j), i,j=1,2,3.
€anc is the Levi-Civitta symbol and wap are the rotation 1-forms of the onftxl};
manifold. Equation (10) defines uniquely the structure of a maniiold wlBuch is ?dz .
cosmological model. The new ¢ will be solutions of d§* = —@”s A 6. BesICe

: . ; ; . . ons relating
must satisfy Einstein’s equation for a given source, and this results in equaﬂO:j ntaee i

the a and the matter content of the model. The method is general and the g

interpretation obvious. ‘
. . 1 to 2 locd

TFor instance, we can verify that dg°= a(1)8°A 8" does not correspond t0 @ rota} n f::d9‘=d9' =

accseleration along X*. Such universes contain a class of solutions of Einstein’s equation (

d6” =0) known as Ehlers-Kundt plane-gravitational waves.
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we will now consider an examlple.2 We start with a Minkowski space and, according
10), proceed to rotate the (X°, X°) plane of the Cartan frame as

bo‘ =a62, moz=ﬁ91, W= 'YGO (11)
4ith o, B, ¥ as constants. Using (11) in (2) we obtain

d°= (a—PB)8'n6°
d6'= (a+v)6°r6° (12)
dg*=—(B—7)0" A 6°,

Weassume an observer co-moving with matter as in (4). The congruence of world lines
of matter is defined by the unity velocity field u* = efg,. Itis geodesic and expansion free

i

1of

')'OAO=O (13)

ad
YA, =0 (14)

respectively. Conditions (13) and (14) are always satisfied for choice (10), provided the
original @ satisfy them.

Foraperfect fluid source, the density of matter and the pressure, as measured by the
sbove co-moving observers, are denoted by p and P respectively. The vanishing of the
divergence of the energy-momentum tensor, (13) and (14) imply that p and P are
constants, as expected. Einstein’s equations with a cosmological term

Ras—(R ~A)nap = K[(p + P)uatis — Prias] (15)
e satisfied by (12) for
=0 2e0B+A=Kp (16)
2A=K(p-P)

Wrm.arbitrary equation of state. Notice the two special cases:
i) Incoherent matter

y=0 4apf = Kp =2A.

o (17
(i) Extreme relativisitic perfect fluid
¥=0 2aB8 =Kp 18
A=Q P=p. "

Al solutiong corres

i@eﬂtWﬂl be give pond to homogeneous rotating cosmological models. The line

n by (1) with the @ satisfying (12)—integrability conditions for this

CF[ACCE]F= 0

e 2utomar . .
Matically satisfied and guarantee the existence of the 4, where the structure
5c are defined by :

dOA = “%CABc@B A OC.
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New 6 may be defined by
8°=A,6° 8'=A,8" 9°=A,6° 6°= A,
and used to transform (12) into
d6~°=5051/\52 dél=€10~2/\ 4°
dé*=e,6"76°
where, for solutions (16)
e1=—a{A¢A,/A,)
&= —B(AoAi/Ar) )
€0A>=¢€,Al—e, A2
If we consider cases (17) and (18) only, we must have af > 0 because p > 0. This imphies
€,6,>0

and we have the following groups on sections X> = constant:

€0 €,=€ a=|A1/A2|

+1 F1 >1
*1 +1 <1
0 1 1

The two first cases are equivalent for the change of 6' and §°. They correspond to
Bianchi type VIII (Ellis and MacCallum 1969).

In general for the case (16), condition a8 > 0 is not necessary and (12) or (19) liows
for other group types on X = constant sections and correspondingly more solutions.

To illustrate, consider the case when

€0="'1, €1=€2=+1, a>0 (21)

The line element is given by
ds*= AY6)’~ A ()~ A%(67) - A%
with
0° = —sin x* dx?+¢** cos x* dt g =dx'+e” dr
6% =cos x" dx*+e* sin x* dt 6°=dx’
which satisfy (19) for (21), and
Kp=4/A5=2A for P=0.
Kp=2/A} forP=p
A=A~ A2

(2l
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Jatter propagates along the geodesic congruence defined by the unit geodesic vector

feld

u*=(1/Ag)e ™ cos x*, —cos x, —sin x*, 0). (23b)

sofution (23) does not include the Gédel model as a particular case.

For the value a =1, we have tl;e limiting case €, = 0 so that we have a finite density
ofmatter. The group acting on X~ = constant section is Bianchi I—this corresponds to
e homogeneous non-rotating anisotropic solution with dust,

dsz=A02 dtZ__A‘Ze——Zt(dx])Z_AlZeZI(dXZ)Z_(dx3)2
Kp=4/A}=2A. '

The method could also be used to eliminate the rotation of a rotating universe. We
ave done this for the G6del model, obtaining a non-rotating model which is a solution
o Einstein’s equations for a fluid with density p and anisotropic pressure. The
msmological constant has a sign opposite to that of Godel’s, and the components of
pessure cannot all have the same sign simultaneously, even though satisfying
exergy conditions. A class of two-dimensijonal space-like. sections have peculiar
moperties related to the completeness of geodesics, which we intend to discuss in the
fare. Atpresent, we are working on a rotating expanding model which is a demanding
application of the method.
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